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Abstract. For more than 100 years, group and number theorists have been interested
in quesitons such as: (a) If a group G has order |G| =

∏
pαi
i (pi distinct primes), what

conditions on the primes pi and their exponents αi ensure that G is cyclic, or G is abelian,
or G is nilpotent, or supersolvable, or solvable? (b) How fast does g(n) = |{m ≤ n |
every group G of order m has one of these properties}| grow as a function of n? Ques-
tions (a) and (b) have been answered when the property is either cyclic, abelian, or nilpo-
tent. But when the property is supersolvable or solvable, only question (a) has been fully
answered. We greatly increase the current lower bounds for g(n) when the property is
supersolvable or solvable. In the latter case our lower bound is just below the best upper
bound known.

1 Introduction

All groups here are finite. A group G is cyclic if there is an element g ∈ G such that every
element of G may be expressed as a power gm of g (where m is an integer). A group G
is abelian if for every pair a, b ∈ G, ab = ba. A sequence 1 = N0 ≤ N1 ≤ · · · ≤ Nr = G
of normal subgroups of G is a central series for G if for 1 ≤ i ≤ r we have Ni/Ni−1 ≤
Z(G/Ni−1), the center of G/Ni−1. A group is nilpotent if it has a central series. G is
nilpotent if and only if every maximal subgroup of G is normal. G is supersolvable if there
exist normal subgroups Ni of G with 1 = N0 ≤ N1 ≤ · · · ≤ Nr = G where each factor
Ni/Ni−1 is cyclic. G is supersolvable if and only if every maximal subgroup M ≤ G has
prime index [G :M ] [Huppert, 1954]. G is solvable if there exist normal subgroups Ni of
G with 1 = N0 ≤ N1 ≤ · · · ≤ Nr = G where each Ni/Ni−1 is abelian.

There is exactly one isomorphism class of groups of order n if and only if every group
of order n is cyclic. [Miller, Collected Works I] was the first to discover that there is
exactly one isomorphism class of groups of order n if and only if (n, φ(n)) = 1, where
φ(n) (Euler’s totient function) = |{m ≤ n | (m,n) = 1}| = n

∏
primes p | n

(
1− 1

p

)
. Thus

for example every group of order 15 is cyclic. If we set

C(n) = |{m ≤ n | every group of order m is cyclic}|
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then C(n) = |{m ≤ n | m is square free and no two prime factors p, q of m satisfy p ≡ 1
(mod q)}|.

Similarly, [Dickson, 1905] a group of order n =
∏
pαi
i (pi distinct primes) is abelian if

and only if (i) each αi ≤ 2 and (ii) (pi, p
αj

j − 1) = 1 for every i, j. Thus for example, every
group of order 45 is abelian. If we set

A(n) = |{m ≤ n | every group of order m is abelian}|

then A(n) = |{m ≤ n | m =
∏
pαi
i where each αi ≤ 2 and (pi, p

αj

j − 1) = 1 for every i, j}|.

Also [Bachman, 1960] proved that a group of order n =
∏
pαi
i is nilpotent if and only

if for every i, j, (pi,
∏αj

λ=1(p
λ
j − 1)) = 1. Thus for example every group of order 135 = 33 · 5

is nilpotent. If we set

N(n) = |{m ≤ n | every group of order m is nilpotent}|

then N(n) = |{m ≤ n | m =
∏
pαi
i and for every i, j, (pi,

∏αj

λ=1(p
λ
j − 1)) = 1}|.

Finally, let ψ(pk) be the multiplicative function defined on prime powers by ψ(pk) =
(pk − 1)(pk−1 − 1) . . . (p − 1). Then in [Pazderski, 1959, pg. 335] we find a proof that a
group of order n =

∏t
i=1 p

αi
i (p1 < p2 < · · · < pt) is supersolvable if and only if:

(1) For all 1 ≤ i ≤ t, the distinct prime factors of (n, ψ(pαi
i )) are the same as those of

(n, pi − 1).

(2) If there exists i ̸= k such that pi ≤ αk (i.e. some prime factor of n is less than or
equal to the multiplicity of another prime factor of n) then

(a) There does not exist a prime pj such that pi | (pj − 1) and pj | (pk − 1), and

(b) αi ≤ 2, and if αi = 2 then p2i | (pk − 1). Thus for example every group of order
54 is supersolvable. If we set

U(n) = |{m ≤ n | every group of order m is supersolvable}|

then U(n) = |{m ≤ n | m =
∏t

i=1 p
αi
i (p1 < p2 < · · · < pt) and m (replacing n) satisfies (1)

and (2)(a),(b) above}|. Finally, set

S(n) = |{m ≤ n | every group of order m is solvable}|

and note that C(n) ≤ A(n) ≤ N(n) ≤ U(n) ≤ S(n).
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In [Pakianathan and Shankar, 2000], we find criteria based on J. Thompson’s deep
result [Thompson, 1968] on minimal simple groups, for the positive integer m to be a
solvable group order, that is every group of order m is solvable: m is a solvable group order
if and only if m is not a multiple of any of (i) 2p(2p − 1), p a prime (ii) 3p(32p − 1)/2,
p an odd prime (iii) p(p2 − 1)/2, p a prime > 3 and p ≡ 2 or 3 (mod 5) (iv) 243313 (v)
22p(22p + 1)(22p − 1), p an odd prime. The On-line Encyclopedia of Integer Sequences
(OEIS) has a list of many such m (A056866).

[Erdös, 1948] found the asymptotic behavior of C(n) =
∑
m≤n

(m,φ(m))=1

1, proving that C(n) =

(1 + o(1)) ne−γ

log log logn
where γ = 0.57721 . . . is Euler’s constant. [Mays, 1978] proved that

A(n) and N(n) also = (1+ o(1)) ne−γ

log log logn
, so C(n), A(n) and N(n) each grow more slowly

than n. Using an old result of Burnside, and the Feit-Thompson Theorem that every
non-abelian finite simple group has even order, [Mays, 1978] proved that S(n) > 0.869n
for n > N0.

Using Pazderski’s criteria, we check that every group of square-free order n =
∏
pi

(distinct primes) is supersolvable. ζ is the Riemann Zeta function and ζ(2) =
∑∞

k=1 1/k
2 =

π2/6. Since [Montgomery, 1981] the number of square-free integers ≤ n is equal to n
ζ(2)

+

O(
√
n) >

(
6
π2

)
n > 0.6079n, we know that U(n) > 0.6079n.

[Y. D. Zhang and Fan Young, 1981] reformulated Pazderski’s criteria and gave a dif-
ferent proof that their criteria characterize those integers n for which every group of or-
der n is supersolvable: A group of order n is supersolvable if and only if n =

∏r
i=1 p

λi
i

(p1 < p2 < · · · < pr) and

(i) For any i, j,
(
pi,

∏λj

s=1(p
s
j − 1)

)
= (pi, pj − 1)

(ii) When pi ≤ λj (1 ≤ i < j ≤ r), we must have 1 ≤ λi ≤ 2 and pλi
i | (pj − 1), and

moreover no pk exists (i < k < j) such that pi | (pk − 1) and pk | (pj − 1).

Finally, [A. Hughes, 1980] stated that n is a supersolvable order if and only if three
criteria are satisfied:
Suppose n =

∏s
i=1 p

ai
i , p1 < p2 < · · · < ps (primes). Then n is an supersolvable order if

and only if there exist p, q, r (distinct) prime divisors of n, such that

(1) If pd | (qt − 1) (t ≤ aq, d ≤ ap) then pd | (q − 1).

(2) If p3 | n and p3 | (q − 1) then aq < p.

(3) If p < q < r, p | (q − 1) and pq | (r − 1) then ar < p.

Hughes stated that his proof is “to appear”, but the proof has never appeared. We
decided to count the number of supersolvable orders between 2 and 10k when 1 ≤ k ≤ 13,
using each author’s criteria. As expected, the authors’ counts agree and are displayed as
U(10k) in the Table below for 1 ≤ k ≤ 13. The average time it took the 3 counts for each
k, is also displayed.
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k U(10k) Average Time (Rounded)
1 9 0.00064 (seconds)
2 88 0.00187 (seconds)
3 871 0.00269 (seconds)
4 8,682 0.00494 (seconds)
5 86,772 0.01354 (seconds)
6 867,683 0.08478 (seconds)
7 8,676,833 1.0221 (seconds)
8 86,768,040 17.3962 (seconds)
9 867,679,854 323.582 (seconds)
10 8,676,796,466 0.0620 (days)
11 86,767,961,313 0.8528 (days)
∗12 867,679,598,773 10.061 (days)∗
∗13 8,676,795,952,899 133.475 (days)∗

∗When k = 12 (or 13), these are the times it would take one computer to run the program.
The HPC is a cluster of computers, and 10 computers were run concurrently. For example,
when k = 12, each computer counts in an interval of length 10". To get a closer estimate
of the HPC runtime (not including queue times), divide the time by 10.

Here is the public repository for the project:

https://github.com/guanhongl/supersolubility

The files ss.c, ss_pazderski.c, and ss_h.c correspond to the three criteria.
Below these, readers will find the directions for running the program locally.

Our table of U(n) reveals that U(n) > 0.8676n without using the results of Burnside
and Feit-Thompson.

In order to find S(n), we found NS(n) = n−S(n), the number of integers m ≤ n such
that some group of order m is not solvable. For example, since some group of order 60
(namely Alt(5)) is not solvable, and m = 60 is the only m ≤ 102 for which some group of
order m is not solvable, we have NS(102) = 1. Using the criteria based on J. Thompson’s
result on minimal simple groups, we know that some group of order m is not solvable if
and only if m is a multiple of at least one of (i), (ii), (iii), (iv) or (v) (listed earlier). For
example, some group of order 1344 = 26 · 3 · 7 is not solvable since 1344 = (24) · 2p(2p − 1)
where p = 3. Using a (2017) Lenovo Y520-151KBM desktop computer and source code
written in Mathematica (modified slightly from that at OEIS AO56866), we found for
3 ≤ k ≤ 8, keeping track of the time taken in seconds:
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k NS(10k) Time (Rounded)
3 20
4 224 0.66
5 2240 7.29
6 22416 110.35
7 224132 1,872.89
8 2241423 32,924.33

Since there are 86, 400 seconds/day, it took approximately 0.38 days to find the number
of m ≤ 108 for which some group of order m is not solvable. We stopped at 108, since
we estimate that it will take at least a week to find NS(109) with not much information
gained. Since S(n) = n−NS(n), we have the following:

k S(10k) S(10k)/10k

3 980 0.980
4 9776 0.9776
5 97760 0.9776
6 977584 0.977584
7 9775868 0.97758680
8 97758577 0.97758577

As noted earlier [Mays, Thm. 5, 1978] proved that for n large enough: 0.869n < S(n) <
0.978n. We see from the above table how close to his upper bound S(n) is.
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